首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
测绘学   1篇
地球物理   10篇
地质学   29篇
海洋学   2篇
天文学   43篇
综合类   1篇
自然地理   5篇
  2023年   2篇
  2022年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2011年   1篇
  2009年   6篇
  2008年   3篇
  2007年   6篇
  2006年   6篇
  2005年   8篇
  2004年   1篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   7篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1962年   2篇
  1960年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
61.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   
62.
63.
We present the results of 12CO(1-0) and 12CO(2-1) observations on UGC 1347 obtained with BIMA and the IRAM 30 m telescope. UGC 1347 is a member of the Abell 262 cluster. In Abell 262, a nearby spiral rich cluster, the signs of galaxy interaction and therefore the mechanisms which play an important role in galaxy evolution within clusters can be studied with high spatial resolution. Aside from its bright central region, UGC 1347 features a second prominent source at the southern tip of the bar, which has been identified as region with recent enhanced star formation. The CO observations prove the existence of reservoirs of cold molecular gas at the positions of both bright regions.  相似文献   
64.
65.
66.
We analyzed the fractal and multifractal properties of the earthquake time series occurred around the Enguri dam in West Georgia by applying the methods of detrended fluctuation analysis and multifractal detrended fluctuation analysis. We examined the interevent time series in two periods: (1) 1960–1980, in which the investigated area was characterized by the natural seismicity; and (2) 1981–2012, in which the quasi-periodic change of the reservoir water level affected the earthquake generation. Our findings show that the water level variation may influence the fractal properties of earthquake temporal distribution in the local area around the Enguri dam. In particular, it is observed that the time distribution features of seismicity occurred in the second period are more persistent than the natural seismicity occurred in the first period. Furthermore, the seismic process of the second period shows a lower multifractal degree than that of the first period, indicating that the influence of quasi-periodic fluctuation of water level features the seismicity as more regular compared to the natural seismicity.  相似文献   
67.
68.
69.
Previous studies on the coal-bed methane potential of the Zonguldak basin have indicated that the gases are thermogenic and sourced by the coal-bearing Carboniferous units. In this earlier work, the origin of coal-bed gas was only defined according to the molecular composition of gases and to organic geochemical properties of the respective source rocks, since data on isotopic composition of gases were not available. Furthermore, in the western Black Sea region there also exist other source rocks, which may have contributed to the coal-bed gas accumulations. The aim of this study is to determine the origin of coal-bed gas and to try a gas-source rock correlation. For this purpose, the molecular and isotopic compositions of 13 headspace gases from coals and adjacent sediments of two wells in the Amasra region have been analyzed. Total organic carbon (TOC) measurements and Rock-Eval pyrolysis were performed in order to characterize the respective source rocks. Coals and sediments are bearing humic type organic matter, which have hydrogen indices (HI) of up to 300 mgHC/gTOC, indicating a certain content of liptinitic material. The stable carbon isotope ratios (δ13C) of the kerogen vary from −23.1 to −27.7‰. Air-free calculated gases contain hydrocarbons up to C5, carbon dioxide (<1%) and a considerable amount of nitrogen (up to 38%). The gaseous hydrocarbons are dominated by methane (>98%). The stable carbon isotope ratios of methane, ethane and propane are defined as δ13C1: −51.1 to −48.3‰, δ13C2: −37.9 to −25.3‰, δ13C3: −26.0 to −19.2 ‰, respectively. The δD1 values of methane range from −190 to −178‰. According to its isotopic composition, methane is a mixture, partly generated bacterially, partly thermogenic. Molecular and isotopic composition of the gases and organic geochemical properties of possible source rocks indicate that the thermogenic gas generation took place in coals and organic rich shales of the Westphalian-A Kozlu formation. The bacterial input can be related to a primary bacterial methane generation during Carboniferous and/or to a recent secondary bacterial methane generation. However, some peculiarities of respective isotope values of headspace gases can also be related to the desorption process, which took place by sampling.  相似文献   
70.
天然气中氮的地球化学特征   总被引:23,自引:0,他引:23  
杜建国 Faber  E 《沉积学报》1996,14(1):143-148
本文研究了天然气中氮的地球化学特征,并讨论了氮的成因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号